489 research outputs found

    Evolving SDN for Low-Power IoT Networks

    Get PDF
    Software Defined Networking (SDN) offers a flexible and scalable architecture that abstracts decision making away from individual devices and provides a programmable network platform. However, implementing a centralized SDN architecture within the constraints of a low-power wireless network faces considerable challenges. Not only is controller traffic subject to jitter due to unreliable links and network contention, but the overhead generated by SDN can severely affect the performance of other traffic. This paper addresses the challenge of bringing high-overhead SDN architecture to IEEE 802.15.4 networks. We explore how traditional SDN needs to evolve in order to overcome the constraints of low-power wireless networks, and discuss protocol and architectural optimizations necessary to reduce SDN control overhead - the main barrier to successful implementation. We argue that interoperability with the existing protocol stack is necessary to provide a platform for controller discovery and coexistence with legacy networks. We consequently introduce {\mu}SDN, a lightweight SDN framework for Contiki, with both IPv6 and underlying routing protocol interoperability, as well as optimizing a number of elements within the SDN architecture to reduce control overhead to practical levels. We evaluate {\mu}SDN in terms of latency, energy, and packet delivery. Through this evaluation we show how the cost of SDN control overhead (both bootstrapping and management) can be reduced to a point where comparable performance and scalability is achieved against an IEEE 802.15.4-2012 RPL-based network. Additionally, we demonstrate {\mu}SDN through simulation: providing a use-case where the SDN configurability can be used to provide Quality of Service (QoS) for critical network flows experiencing interference, and we achieve considerable reductions in delay and jitter in comparison to a scenario without SDN

    Optical network democratization

    Get PDF

    Stochastic Energy Efficient Cloud Service Provisioning Deploying Renewable Energy Sources

    Get PDF

    The Benefits of a Disaggregated Data Centre:A Resource Allocation Approach

    Get PDF

    Seer: Empowering Software Defined Networking with Data Analytics

    Get PDF
    Network complexity is increasing, making network control and orchestration a challenging task. The proliferation of network information and tools for data analytics can provide an important insight into resource provisioning and optimisation. The network knowledge incorporated in software defined networking can facilitate the knowledge driven control, leveraging the network programmability. We present Seer: a flexible, highly configurable data analytics platform for network intelligence based on software defined networking and big data principles. Seer combines a computational engine with a distributed messaging system to provide a scalable, fault tolerant and real-time platform for knowledge extraction. Our first prototype uses Apache Spark for streaming analytics and open network operating system (ONOS) controller to program a network in real-time. The first application we developed aims to predict the mobility pattern of mobile devices inside a smart city environment.Comment: 8 pages, 6 figures, Big data, data analytics, data mining, knowledge centric networking (KCN), software defined networking (SDN), Seer, 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International Symposium on Cyberspace and Security (IUCC-CSS 2016

    A Novel QoS provisioning Scheme for OBS networks

    Get PDF
    This paper presents Classified Cloning, a novel QoS provisioning mechanism for OBS networks carrying real-time applications (such as video on demand, Voice over IP, online gaming and Grid computing). It provides such applications with a minimum loss rate while minimizing end-to-end delay and jitter. ns-2 has been used as the simulation tool, with new OBS modules having been developed for performance evaluation purposes. Ingress node performance has been investigated, as well as the overall performance of the suggested scheme. The results obtained showed that new scheme has superior performance to classical cloning. In particular, QoS provisioning offers a guaranteed burst loss rate, delay and expected value of jitter, unlike existing proposals for QoS implementation in OBS which use the burst offset time to provide such differentiation. Indeed, classical schemes increase both end-to-end delay and jitter. It is shown that the burst loss rate is reduced by 50% reduced over classical cloning
    • …
    corecore